Local well-posedness for the periodic higher order KdV type equations
نویسندگان
چکیده
منابع مشابه
Global Well-posedness of Nls-kdv Systems for Periodic Functions
We prove that the Cauchy problem of the Schrödinger-KortewegdeVries (NLS-KdV) system for periodic functions is globally well-posed for initial data in the energy space H1×H1. More precisely, we show that the nonresonant NLS-KdV system is globally well-posed for initial data in Hs(T) × Hs(T) with s > 11/13 and the resonant NLS-KdV system is globally wellposed with s > 8/9. The strategy is to app...
متن کاملWell-posedness of Higher-order Camassa–holm Equations
We consider higher-order Camassa–Holm equations describing exponential curves of the manifold of smooth orientation preserving diffeomorphisms of the unit circle in the plane. We establish the existence of a strongly continuous semigroup of global weak solutions. We also present some invariant spaces under the action of that semigroup. Moreover, we prove a “weak equals strong” uniqueness result.
متن کاملSharp ill-posedness and well-posedness results for the KdV-Burgers equation: the periodic case
We prove that the KdV-Burgers is globally well-posed in H−1(T) with a solution-map that is analytic fromH−1(T) to C([0, T ];H−1(T)) whereas it is ill-posed in Hs(T), as soon as s < −1, in the sense that the flow-map u0 7→ u(t) cannot be continuous from H s(T) to even D′(T) at any fixed t > 0 small enough. In view of the result of Kappeler and Topalov for KdV it thus appears that even if the dis...
متن کاملHigher-Order Equations of the KdV Type are Integrable
We show that a nonlinear equation that represents third-order approximation of long wavelength, small amplitude waves of inviscid and incompressible fluids is integrable for a particular choice of its parameters, since in this case it is equivalent with an integrable equation which has recently appeared in the literature. We also discuss the integrability of both secondand third-order approxima...
متن کاملHIGHER-ORDER KdV-TYPE EQUATIONS AND THEIR STABILITY
We have derived solitary wave solutions of generalized KdV-type equations of fifth order in terms of certain hyperbolic functions and investigated their stability. It has been found that the introduction of more dispersive effects increases the stability range. 2000 Mathematics Subject Classification. 35Q53.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nonlinear Differential Equations and Applications NoDEA
سال: 2011
ISSN: 1021-9722,1420-9004
DOI: 10.1007/s00030-011-0147-9